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SUMMARY

We present a systematic derivation of a discrete dynamical system directly from the two-dimensional
incompressible Navier–Stokes equations via a Galerkin procedure and provide a detailed numerical
investigation (covering more than 107 cases) of the characteristic behaviours exhibited by the discrete
mapping for speci�ed combinations of the four bifurcation parameters. We show that this simple 2-D
algebraic map, which consists of a bilinearly coupled pair of logistic maps, can produce essentially
any (temporal) behaviour observed either experimentally or computationally in incompressible Navier–
Stokes �ows as the bifurcation parameters are varied in pairs over their ranges of stable behaviours. We
conclude from this that such discrete dynamical systems deserve consideration as sources of temporal
�uctuations in synthetic-velocity forms of subgrid-scale models for large-eddy simulation. Copyright ?
2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Study of the logistic map,

m(n+1) =�m(n)(1−m(n)) (1)

has a long history, and we shall not attempt an exhaustive review here; the well-known paper
by May [1] provides considerable background as does the book by Collet and Eckmann [2]; a
more concise introduction is given by Lauwerier [3] as a prologue to 2-D discrete dynamical
systems (DDSs), and Alligood et al. [4] present elementary treatments of both the 1-D and
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546 J. M. McDONOUGH AND M. T. HUANG

the 2-D cases. Feigenbaum [5] popularized the study of such systems with his discovery of
universal constants related to the period-doubling bifurcations observed in a large class of
quadratic maps. While none of these early studies attempted to make a direct connection
with Navier–Stokes turbulence, the time series produced by the map iterations during chaotic
behaviour were without doubt quite suggestive, as noted in Reference [1].
Possibly Pulliam and Vastano [6] were the �rst to indicate a likely direct connection: they

observed that the bifurcation sequence of the 2-D Navier–Stokes (N–S) equations for �ow
over a NACA-0012 airfoil was very similar to that undergone by the logistic map, namely
period-doubling bifurcations leading to chaos with increasing Reynolds number, and including
‘periodic windows’ within the chaotic regime. Frisch [7] goes further to demonstrate that a
simple quadratic map (which can be easily transformed to (1)),

x (n+1) =1− 2x (n) (2)

might be viewed as a ‘poor man’s Navier–Stokes equation’. He carries this out in physical
space with a simple ad hoc argument based on comparing terms of a rearrangement of (2)
with those of the N–S equations. Clearly, one would not want to push this analogy too far
since the N–S equations comprise a vector system of partial di�erential equations (PDEs),
while Equation (2) is merely a single scalar algebraic expression.
In the following sections we will show, however, that multi-dimensional coupled versions

of Equation (1) can be obtained in a straightforward way beginning with a Galerkin approx-
imation of the N–S equations. In particular, we will arrive at the 2-D system of coupled
logistic maps,

a(n+1) = �1a(n)(1− a(n))− �1a(n)b (n) (3a)

b (n+1) = �2b (n)(1− b (n))− �2a(n)b (n) (3b)

and then analyse some aspects of the behaviour of this system via numerical experiments. It
will be shown that not only does this 2-D DDS undergo the usual logistic map bifurcation
sequence, but that it also possesses additional regimes not seen in 1-D maps, analogous to
those described in Abraham et al. [8] and elsewhere. These regimes, and the bifurcation
sequences in which they are imbedded, are very much like those observed in laboratory
experiments involving �uid �ow and heat transfer (cf. Gollub and Benson [9]), and in many
cases the corresponding time series are physically realistic. In fact, McDonough et al. [10]
and Mukerji et al. [11] have demonstrated the ability to model both numerical simulations
and experimental data with linear combinations of a slight modi�cation of (1). This raises
the question of whether algebraic expressions such as Equations (3) might be of value for
producing practical, computational models of turbulence, e.g. in the context of subgrid-scale
(SGS) models for large-eddy simulation (LES).
Indeed, the present study has been motivated by recent work on what is sometimes termed

‘synthetic velocity’ approaches to SGS modelling. In these procedures the subgrid-scale ve-
locities are directly modelled, in contrast to modelling sub-grid stresses, as is typically done
in LES. Examples of this can be found in recent papers by Domaradzki and Saiki [12], Kim-
mel and Domaradzki [13] and Scotti and Meneveau [14]. A related technique �rst proposed
in McDonough et al. [15], and developed in Hylin [16] and Hylin and McDonough [17],
employs such velocities directly, rather than as a means to construct subgrid-scale stresses,
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making this approach somewhat similar to the nonlinear Galerkin and multilevel procedures
of Temam and co-workers (see, e.g. Dubois et al. [18] and references therein). It is partic-
ularly within this framework that the results to be presented below might best be used, but
there is potential for their application in any turbulence model that can be expressed in terms
of small-scale �uctuating velocity components, possibly including even Reynolds-averaged
Navier–Stokes (RANS) formulations.
In the context of the Hylin and McDonough [17] formalism, SGS velocity components are

expressed as a product of three factors, viz. an amplitude, an anisotropy correction, and a
temporally �uctuating component. The �rst two of these can be related to computed resolved-
scale velocity (see Reference [17] for details), and algebraic chaotic maps (DDSs) have been
proposed for the third factor. But no ‘�rst-principles’ derivation has previously been given
to prescribe these maps. In the cited references linear combinations of the 1-D logistic map,
and other related DDSs have been employed [16], but with no particular justi�cation. One of
the obvious shortcomings of these 1-D maps as models of N–S behaviour is their inability to
produce quasiperiodic time series. On the other hand, it is well known that systems of 2-D
maps often exhibit quasiperiodicities as well as phase lock and the related transitions between
the two, as observed in the Rayleigh–B�enard convection experiments reported in Reference
[9]. This suggests that the appropriate form of DDS should be at least two-dimensional, and
it seems natural to employ a 2-D map to model the 2-D N–S equations (with the obvious
extension to 3-D).
This paper documents an initial investigation of such a system. Our principle goal in this

study has been to identify and characterize the possible behaviours of Equations (3) and
to compare these, both qualitatively and quantitatively, to known behaviours of the N–S
equations. We emphasize, however, that independent of results to be presented, Equations (3)
arise from the 2-D equations, and any speci�c similarities to actual N–S -like behaviour must
be considered within this framework.
The remainder of this work is organized as follows. In Section 2 we provide a detailed

derivation of Equations (3), indicating the assumptions that are needed and the relationship of
the bifurcation parameters to parameters that naturally occur in the N–S equations. Section 3
is devoted to the presentation and discussion of a fairly detailed (but also quite restricted—in
the sense to be indicated below) regime map exhibiting the range of phenomena accessible
by Equations (3). In Section 4 we summarize the results, draw conclusions, and speculate on
the possible utility of coupled, multi-parameter DDSs of form (3) as subgrid-scale turbulence
models.

2. ANALYSIS

In this section we derive the ‘poor man’s Navier–Stokes equation’ given above as Equa-
tions (3), and then brie�y discuss the relationships between these equations and other similar
alternatives. We begin with the incompressible form of the Navier–Stokes equations,

Ut +U · ∇U= − ∇P + ��U for (x; t)∈�× (t0; tf]; � ⊆ Rd; d=2; 3 (4)

which must be accompanied by the divergence-free constraint ∇·U=0 to provide a su�cient
number of equations to obtain the pressure P and by appropriate boundary and initial condi-
tions necessary to provide a well-posed problem. In Equation (4) U=(u; v)T is the velocity
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548 J. M. McDONOUGH AND M. T. HUANG

vector in the 2-D domain �; � is kinematic viscosity, and ∇ and � are gradient and Laplace
operators, respectively, in an appropriate co-ordinate system; the subscript t denotes partial
di�erentiation with respect to time.
Mathematical analysis of Equations (4) often begins with a Leray projection to a divergence-

free subspace of the Sobolev space of solutions (see, e.g. Constantin and Foias [19] for
details), thus eliminating the pressure gradient from (4) when viewed in the weak sense. We
will adhere to this herein. Thus, after typical scaling and application of the Leray projection,
the 2-D N–S equations can be expressed as

ut + uux + vuy =
1
Re
�u (5a)

vt + uvx + vvy =
1
Re
�v (5b)

which is actually a strong form representation—simply a 2-D system of Burgers’ equations.
In these equations subscripts indicate partial di�erentiation, and Re is the Reynolds number,
Re=UL=�, with U and L being appropriate velocity and length scales, respectively. We remark
that Equations (5) arise frequently in CFD as the �rst step in implementing projection methods
of the form considered by, e.g. Gresho [20].
We now construct a Fourier representation of u and v:

u(x; t) =
∞∑

k=−∞
ak(t)’k(x) (6a)

v(x; t) =
∞∑

k=−∞
bk(t)’k(x) (6b)

Here k ≡ (k1; k2)T is a 2-D wave vector. We will assume the tensor product basis set {’k} is
complete (in the norm of an appropriate Sobolev space), orthonormal, divergence-free, and in
C∞
0 and exhibiting properties analogous to complex exponentials with respect to di�erentiation.
These assumptions make the following derivation particularly simple, and not all are absolutely
necessary. At the same time, it should be recognized that actually constructing such a basis
set for computational purposes could be di�cult; but this is not necessary for the present
analysis. We will give details for the x-momentum equation; treatment of the y-momentum
equation is identical.
Application of the Galerkin procedure in the usual way results in an in�nite system of

ordinary di�erential equations (ODEs) for the Fourier coe�cients in representation (6); e.g.
for x-momentum we have

ȧk = − ∑
‘;m
A(1)‘m; k a‘am − ∑

‘;m
A(2)‘m; k a‘bm − C

Re
|k|2ak ; −∞¡|k|¡∞ (7)

In Equation (7) A(i)‘m; k ; i=1; 2, arise from Galerkin triple products, and it is assumed that any
required normalizations have been absorbed; C is a normalization constant arising from the fact
that although the {’k} may be orthonormal, this is not necessarily true for their derivatives.
In particular, we are assuming that the derivatives are orthogonal, but with possibly di�erent
normalizations.
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We might view Equation (7), and the corresponding equations for the bk , as an in�nitely
accurate shell model (see Bohr et al. [21], and references therein) suggesting that we should
proceed by deleting from consideration all but some �nite number of wave vectors k. In fact,
we will remove all but a single arbitrary wave vector. This results in

ȧ=−A (1)a2 − A(2)ab− C
Re

|k|2a (8a)

ḃ=−B (1)b2 − B (2)ab− C
Re

|k|2b (8b)

Equations (8) constitute a fairly simple pair of non-linear ODEs, and it should be evident that
the same analysis starting with the 3-D N–S equations would result in an additional equation,
and a further coupling term in each equation; hence, extension to 3D is direct.
It is straightforward to solve this system numerically. Here we will employ a simple forward

Euler single-step, explicit time integration procedure. This leads to

an+1 = an − �
[
C
Re

|k|2an + A(1)(an)2 + A(2)anbn
]

(9a)

bn+1 = bn − �
[
C
Re

|k|2bn + B (1)(bn)2 + B (2)anbn
]

(9b)

where � is an arbitrary discrete time step parameter. We now rearrange the �rst of these
equations as

an+1 = �A(1)an
(
1− C�|k|2=Re

�A(1)
− an

)
− �A(2)anbn (10)

It is easily seen at this point that if we are to recover the logistic map we must require

1− C�|k|2=Re
�A(1)

= 1 (11)

which implies that

�A(1) = 1− C
Re
�|k|2 (12)

This, in turn, permits us to write (10) as

an+1 =
(
1− C

Re
�|k|2

)
an(1− an)− �A(2)anbn

= �1an(1− an)− �1anbn (13)

with obvious de�nitions of �1 and �1.
It is clear that if we suppress the coupling (i.e. set �1 = 0), then we recover the form of

the usual logistic map, Equation (1). Furthermore, it is easily seen that as Re→ ∞, �1 → 1
from below. Since f(a)≡ a(1−a) has a maximum of 1/4 for a∈ [0; 1] we see that we should
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rescale �1 by a factor of 4 to obtain the usual unit scaling typical for DDSs as was done in
Reference [1]. This then suggests that the range of values for �1 is between zero and four,
just as in the logistic map. It is also worth observing that �1 depends on the wavevector
magnitude, and on the numerical time step parameter. In particular, we see that the product
of these factors must be less than Re=C in order for �1¿0 to hold. This implies that as the
wavevector magnitude increases, the time step size must decrease, just as would certainly be
the case in order to maintain stability of an explicit time-stepping method such as forward
Euler. It has recently been shown in McDonough et al. [22], however, that a fairly wide
range of stable behaviour occurs even when �¡0 holds.
A completely analogous derivation applied to Equation (9b) results in a coupled system of

two logistic maps, obtained directly from the N–S equations:

a(n+1) = �1a(n)(1− a(n))− �1a(n)b (n) (14a)

b (n+1) = �2b (n)(1− b (n))− �2a(n)b (n) (14b)

We also see that �1 = �A(2) (and analogous to this, �2 = �B(2)), indicating that it is basi-
cally set by the time-stepping parameter and the Galerkin triple product corresponding to
the selected wavevector. The latter of these carries information associated with the velocity
gradients. It is straightforward to check (by constructing the Galerkin triple products) that
A(2) is related to uy, and B(2) arises from vx in Equations (5). Of course this relationship is
somewhat complicated by details of wavevector dependence of the triple products, and we
have lumped this into the bifurcation parameters �1 and �2. By determining valid ranges for
these parameters (as a function of the �s) as we will do in the present study, we will have
taken a �rst step toward constructing a mapping of �ow physics (the velocity gradient tensor)
to model parameters.
The four parameters appearing in this 2-D DDS are all associated with nonlinear (or, at

least bilinear) terms, and we would expect the possibility of bifurcations with respect to each
one, separately. Because the present investigation of this system will be entirely numerical,
we will consider only a rather small subspace of the complete four-dimensional space of
parameter values (�1; �2; �1; �2). This will render the results easier to interpret, and as we now
argue, our choice will be a natural one. In particular, since Equations (14) arose from the N–S
equations, and, �1 and �2 both have the same relationship with the Reynolds number, it is
reasonable (but not necessarily correct—see Reference [22]) to set �1 =�2. It is less clear that
also setting �1 = �2 is even a natural choice. But we have done so for simplicity in this initial
study, while recognizing that there may be important phenomena omitted as a consequence.
In any case, we will select our bifurcation parameter values from along a diagonal of the
4-D curvilinear parallelopiped [0; �1;max]× [�1;min; �1;max]× [0; �2;max]× [�2;min; �2;max] by setting
�2 =�1 and �2 = �1.
We remark that although Equations (14) are relatively simple in structure, the mathematical

theory of systems of polynomials is di�cult. In part because of this, analytical theory of
multi-dimensional DDSs is still in its infancy despite a very long history as indicated, e.g. in
Abraham et al. [8]. The �rst such map to receive wide attention in the modern literature was
that due to H�enon [23], which was constructed as an algebraic model of the Lorenz equations
[24]. As is well known, these equations are, themselves, a very crude (but di�erential) model
of the N–S equations plus the thermal energy equation (cf. Yorke and Yorke [25]), and while

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:545–578



POOR MAN’S NAVIER–STOKES EQUATION 551

they retain some of the features of the N–S equations for very speci�c �ows (e.g. �ow in a
toroidal thermosyphon [25]), they cannot be viewed as a useful model in general. Moreover,
although similarities between iterations of the DDS presented in Reference [23] and solutions
to the Lorenz equations are claimed, in fact details of the bifurcation sequences show little
similarity (but see H�enon and Pomeau [26]).
Several other 2-D DDSs are studied (numerically) in Reference [8], as well as in FrHyland

[27], where some analytical results also are presented. But in all these cases the basic system
structure is similar in that one of the two equations is always strictly linear. As a consequence
there is no ‘symmetry of structure’ that we would expect to �nd in models of the N–S equa-
tions, and which is evident in our Equations (14). We also note that Equations (14) is not the
only possible DDS that can be obtained from the N–S equations by a Galerkin procedure. It
would be possible, for example, to retain the pressure gradient terms (i.e. not invoke a Leray
projection) and introduce a constant forcing in the Fourier space representation, Equation (7),
analogous to the treatment given in McDonough and Bywater [28] for Burgers’ equation. Of
course, this would not result in a DDS in the form of a pair of logistic maps. Alternatively,
we could, after retaining the pressure gradient in the basic formulation, eliminate it alge-
braically in Fourier space as is often done for spectral approximations of the N–S equations.
Finally, we emphasize that the speci�c constraint, Equation (11), was necessary for obtain-
ing a coupled system of logistic maps, but even without this we would still have produced
a reduced shell model related to the N–S equations. Indeed, we have performed numerical
experiments with some of these formulations and have found their generic behaviours to be
similar to those reported herein. But we also have found that such systems exhibit far smaller
regions of non-divergent behaviour making them less suitable for application to the modelling
procedures we propose.

3. RESULTS AND DISCUSSION

In this section we present results obtained by iterating the DDSs of Equations (14) for various
values of �1 =�2 =� and �1 = �2 = � in the range �∈ [1; 4], �∈ [�min(�); �max(�)]. We will �rst
characterize the di�erent regimes that have been identi�ed by means of their power spectra,
and then summarize the behaviour in the form of a regime map analogous to that presented in
Reference [28] in a somewhat similar study of a forced Burgers’ equation. This will provide
a broad overview of the range of behaviours exhibited by Equations (14), and at the same
time at least a qualitative comparison with what is known regarding possible regimes, and
transitions between these regimes, for N–S �ows. Following this we present more details of
representative behaviour from within each of the regimes in the form of time series, phase
portraits, autocorrelations, cross correlations, �atness and skewness.
Most calculations reported for this study were performed in parallel mode using OpenMP

with eight processors on a HP N-4000 96-processor symmetric multiprocessor at the Uni-
versity of Kentucky Computing Center. Additional computations were carried out on a HP
J-2240 workstation in the Computational Fluid Dynamics Laboratory, also at the University
of Kentucky. All results were obtained using double precision (64-bit) Fortran. A typical run
consisted of 5× 104 iterations (∼ time steps) of Equations (14) with the last 104 subjected to
the indicated statistical analyses, except in the case of power spectra. In this case a standard
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radix-2 FFT was used, and this was applied to the �nal 8192 points of the time series
for {a(n)}.

3.1. Solution regimes

One of the most interesting outcomes of this study was the identi�cation of numerous regimes
of temporal behaviour, including all of those found for the 1-D logistic map, as well as several
other important N–S regimes often seen in laboratory experiments. We have made these
identi�cations entirely in terms of the power spectral density (psd), and a few comments
regarding this choice are in order.
Especially in the context of chaotic solutions, fractal dimension in one form or another

(e.g. the correlation dimension of Grassberger and Procaccia [29]) or Lyapunov exponents
(see, e.g. Wolfe et al. [30]) have been widely used. Both of these, as well as various related
quantities, are computationally intensive and their construction cannot always be carried out in
a completely automatic, objective fashion. As we will indicate in more detail below, O(107)
realizations of Equations (14) will be computed, and the e�ort required to employ either
fractal dimension or Lyapunov exponents as a characterization technique is quite prohibitive,
especially in terms of human time expenditure needed to provide complete con�dence in the
results. Furthermore, it is not clear how to use either of these quantities to distinguish speci�c
chaotic behaviours of the types we will describe in the sequel, although further investigations
of this could be worthwhile. We also note the fairly intuitive result in Reference [10] that no
single statistical quantity could adequately represent chaotic behaviour. The power spectrum,
however, was not used in that study, and probably would not have been appropriate in the
context of �tting dynamical systems to data, the focus of the work reported there (but see
Reference [11]). Thus, we recognize at least some possible shortcomings with this approach,
but in general we �nd it works well.
In the present case we are seeking only identi�cation, and not quanti�cation in the sense of

curve �tting. Thus, the psd appears to be adequate (with a few exceptions noted below), and
it is very e�cient and automatic. We begin by providing a list of the types of behaviour we
have identi�ed in the time series of Equations (14) using this technique: (i) steady, (ii) peri-
odic, (iii) periodic with di�erent fundamental frequency, (iv) subharmonic, (v) phase locked,
(vi) quasiperiodic, (vii) noisy subharmonic, (viii) noisy phase locked, (ix) noisy quasiperiodic
with fundamental, (x) noisy quasiperiodic without fundamental, (xi) broadband with funda-
mental, (xii) broadband with di�erent fundamental, (xiii) broadband without fundamental,
(xiv) divergent.
It is important to note that the attribute ‘noisy’ implies some broadband aspects in the

psd, but we use it here in conjunction with some other attribute which is taken to be the
dominant feature. It seems unclear to what extent this might be applied to experimental data
because of ubiquitous instrumentation noise. In the case of a numerically evaluated DDS
there is no such noise, and the broadband features of the psd re�ect actual behaviour of
the DDS. One consequence of this in any of the listed cases is at least mild sensitivity to
initial conditions (SIC), commonly viewed as the hallmark of a strange attractor. We will
discuss what is meant by ‘mild’ in the context of time series and autocorrelations, below.
We also observe that presence of the fundamental frequency in the power spectrum tends to
suppress SIC, even in the case of a broadband spectrum. Because of this, noisy periodic and
broadband with fundamental are indistinguishable. Furthermore, we include in phase locked
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Figure 1. Non-noisy power spectra: (a) periodic (�=3:1; �= − 0:05); (b) periodic with di�er-
ent fundamental (�=3:84; �= − 0:05); (c) subharmonic, three bifurcations (�=3:57; �= − 0:02);

(d) phase locked (�=2:6; �= − 0:655); and (e) quasiperiodic (�=3:1; �= − 0:25).

the case of n-periodic (n¿2) independent of whether the fundamental is present. But we note
that distinguishing subharmonic behaviour beyond the �rst bifurcation from a phase lock is
di�cult without knowing the sequence of behaviours leading to the given state as a bifurcation
parameter is varied. Our approach has been to characterize the behaviour as subharmonic if
the following criteria are met: (i) number of frequencies nf is a power of two; i.e. there exists
an integer m such that nf=2m, and (ii) the power of all frequencies at the 2m−1 level is less
than that of either of their nearest neighbours (in frequency) at the 2m level. Otherwise, the
behaviour is classi�ed as phase locked when such a distinction is necessary. The same criteria
are applied to the corresponding noisy cases.
We also remark that it is tempting to associate divergent behaviour with simply employing

a numerical time step that is too large. Recall, that there is a numerical time step factor �
in Equations (9) appearing in the construction of our bifurcation parameters. But, in some
respects this is incidental, and discrete quadratic maps tend to exhibit divergent behaviour in
certain ranges of values of their bifurcation parameters independent of the method of their
derivation. Thus, we prefer to not associate divergence with numerical instability, per se.
Figure 1 displays psds in order of increasing complexity for examples of each of the

above ‘non-noisy’ classi�cations except steady (which is trivial) and divergent, which is non-
stationary (the values of the time series go to in�nity, usually very rapidly). Each of these psds
has a sharp peak at zero frequency since we did not remove the average (‘dc component’), but
this cannot be seen in the plots. Also note that the frequencies shown have been normalized
because the time increments corresponding to map iterations are arbitrary. In part (a) of the
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�gure we see a single additional sharp peak at the highest possible frequency; this is the basic
periodic case. In continuous dynamical systems the transition from steady to periodic usually
occurs via a Hopf bifurcation, but here in the DDS case this corresponds to a ‘pitchfork’
bifurcation (named for its appearance in the bifurcation diagram of the 1-D map). Part (b)
of the �gure displays a periodic case with frequency di�erent from the original fundamental
frequency, and part (c) shows a subharmonic case that has undergone three bifurcations. Figure
1(d) shows a phase-locked behaviour, and in part (e) we present a simple quasiperiodic case,
which like its continuous counterpart occurs as the result of a (second, in the continuous
case) Hopf bifurcation. We comment that in terms of an actual bifurcation sequence, part (e)
would initially precede part (d), as we now discuss.
Once quasiperiodicity begins as a bifurcation from a periodic state, it is possible that

further changes in the bifurcation parameter will make the two incommensurate frequen-
cies of this case again commensurate. That is, if f1 and f2 are two frequencies satisfying
f1=f2 =p1=p2; p1=p2 irrational, then as � and=or � are (is) varied it is possible for the fre-
quency ratio to change such that f1=f2 = q1=q2, with q1=q2 rational. Then q2f1 = q1f2 is the
‘locking’ frequency. In the discrete case, if f1 is the fundamental, then q2¡q1 must hold;
hence, the locking frequency is less than the fundamental, and all frequencies appearing in
the psd (including the original fundamental, f1) are harmonics of the locking frequency. Part
(d) of Figure 1 is a case of this. In the physics literature this is often termed resonance, and
the frequency ratios are referred to as winding numbers. It is well known from the nonlin-
ear dynamics literature (see, e.g. Reference [27]) that rational winding numbers give rise to
Arnol’d ‘tongues’ in regime descriptions depicting quasiperiodic and phase-locked (resonant)
behaviours.
In Figure 2 we display psds of the noisy cases. Figure 2(a) presents the case of a noisy

subharmonic. The spectral peaks are well de�ned and rise tens of decibels (dB) above the
noise; thus, they are easily detected. It is important to again note, however, that the noise is
an inherent feature of the underlying attractor, and we conjecture that at least some ‘noise’
seen in experimental data may well be of this sort. In part (b) of the �gure we show the case
corresponding to a noisy phase lock. Again, the spectral peaks are easily identi�ed. The noisy
quasiperiodic case with fundamental frequency still present is displayed in Figure 2(c). We
comment that as bifurcation parameters are changed to move the system deeper into the noisy
regime, recognizing spectral peaks becomes increasingly more di�cult. The corresponding
case without the fundamental frequency is shown in part (d) of the �gure. We will later see
that these two cases can also be readily distinguished from corresponding broadband behaviour
by their autocorrelation functions.
The remaining three cases involve broadband behaviour, with and without the fundamental

frequency and with a fundamental that is lower than the maximum resolved frequency. There is
clearly some subjectivity in deciding whether there are any remaining identi�able peaks (even
the fundamental) in some cases, and we have consistently imposed the somewhat arbitrary
requirement that there be no peaks rising to 20 dB or more above the background noise for
a signal to qualify as broadband w=o fundamental. As we indicated earlier, even though the
spectrum may be nearly white noise, if the fundamental remains then various other statistics
are similar to those of quite regular behaviour; e.g. the autocorrelation does not decay rapidly.
In concluding this subsection we remark that the 12 di�erent behaviours indicated in Fig-

ures 1 and 2 are clearly distinct, although as we have already noted there can be some
ambiguity in a few speci�c situations. Thus, in constructing the regime maps to be displayed
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Figure 2. Noisy power spectra: (a) subharmonic (�=3:6; �= − 0:1); (b) phase
locked (�=2:2; �= − 0:825); (c) quasiperiodic w=fundamental (�=2:5; �= − 0:7); (d)
quasiperiodic w=o fundamental (�=2:3; �= − 0:8002); (e) broadband w=fundamental
(�=3:2; �= − 0:331); (f) broadband w=di�erent fundamental (�=3:83; �= − 0:0678); and

(g) broadband w=o fundamental (�=2:5; �= − 0:74).

and discussed in the next subsection, we have used this classi�cation to build a basic pattern
recognition algorithm that automatically assigns a behaviour of one of the above types (and
a corresponding numerical value) for any arbitrary psd.

3.2. The regime map

Plate 1 displays a summary of the results of this study in the form of a regime map (a
2-D bifurcation diagram) in part (a), indicating regions of a speci�c type of behaviour as a
function of � and �. Data plotted here were produced completely automatically using an ‘im-
age processing’ algorithm described elsewhere that assigns a numerical value to each type of
power spectrum, as indicated in part (b) of this �gure. Computations were performed with a
(�; �)-resolution corresponding to ��=��=0:00125, resulting in 3:456× 106 separate cases.
As noted above, each run consisted of a minimum of 5× 104 map iterations of Equations
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(14). Such large numbers of iterations were deemed necessary when it was discovered that
the initial transient could last beyond 2× 104 iterations if (�; �) corresponded to a point near a
regime boundary (i.e. a bifurcation point). The same initial map values were used in all calcu-
lations from which the regime map was constructed: a(0) = 0:3; b(0) = 0:95, henceforth termed
‘standard’. There was no particular rationale for this choice. Because there is no uniqueness
theorem in multidimensions, we often ran various other initial conditions and, indeed, we
sometimes discovered multiple attractors. We will provide limited further discussions for par-
ticularly interesting cases in the sequel, and in additional work currently in progress; but we
note that existence of multiple attractors is well known for 2-D maps (see, e.g. Reference
[27] and Bible and McDonough [31]).
Part (b) of Plate 1 displays the colour table with regime descriptions and numerical as-

signments for each regime, provided to aid discussions of the regime map in Part (a) of the
�gure. We �rst remark that for �61:0 solutions are always either steady (actually null, as in
the 1-D case) or divergent. Obviously, neither of these states is of interest from a modelling
standpoint, so we will give no further consideration to the regimes corresponding to �61:0.
It is also clear that these two states cover much of the regime map for �¿1:0 as well, but
in this case there is still a very signi�cant area in which ‘interesting’ behaviour occurs.
In further elaborating on the nature of the regime map we �rst observe that the � axis

(�=0) shows the bifurcation sequence of the usual 1-D logistic map, Equation (1),

steady→ periodic→ subharmonic→ chaotic

as it must. In particular, Equations (14) collapse to two uncoupled 1-D logistic maps when
�=0, and a well-known theorem for 1-D maps shows that the regimes are unique. Thus,
even though b(0) �= a(0), the ultimate stationary state will be the same for each map. Also note
that other behaviours (not usually identi�ed as part of the logistic map bifurcation sequence)
appear to be indicated beyond �	 3:5. This occurs because, as already shown in Figure 2, we
have identi�ed numerous additional states, any one of which might simply be called chaotic,
but which exhibit distinct power spectra.
It is interesting that non-steady behaviour can occur in 2D at values of � only slightly larger

than the value at which nontrivial steady solutions begin in 1D. In the region to the left of
onset of periodicity in the 1-D case (�63:0), the basic bifurcation sequence corresponding to
decreasing � with � �xed is

steady→ periodic→ quasiperiodic→ chaotic

the Ruelle and Takens [32] bifurcation sequence for the N–S equations. We comment at this
time that we will employ the term ‘chaotic’ somewhat loosely herein, but in any case associate
it with behaviour exhibiting at least ‘mild’ sensitivity to initial conditions (SIC) and irregular
appearance of the time series. (Mild SIC will be discussed in more detail below in the context
of time series where it can be easily identi�ed.) As already noted, there are numerous states
embedded in this sequence, as can be seen more clearly in the zoomed views provided in
Plate 2. (We note that these �gures were not produced by merely zooming the graphics
display window. Instead, the calculations were repeated over the displayed restricted regions
with ��=��=0:000625.) Here, numerous Arnol’d tongues of phase-locked behaviour are
evident, along with a large number of regions of noisy quasiperiodicity and noisy phase lock
preceding the regimes corresponding to broad-band power spectra, which themselves contain
regions of quasiperiodicity and phase lock—both non-noisy and noisy.
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It is also suggestive from Plates 2(a) and (b) that the boundaries separating these regimes
are sometimes fractal. We will not attempt to rigorously demonstrate this herein beyond pro-
viding the inset to Plate 2(a) which displays a (graphics) zoom-in of the region
(�; �)∈ [3:2075; 3:2275]× [−0:355;−0:335]. This shows the (apparently) fractal nature of
boundaries between noisy quasiperiodic states with, and without, the fundamental frequency.
In general, Plates 1 and 2 suggest that (for �xed initial data) the regime boundaries (locus of
bifurcation points) are nonfractal provided one of the two (non-divergent) states approaching
the boundary is not noisy; otherwise, the boundary appears to be fractal.
Beginning immediately with �¿3:0, steady behaviour is no longer observed; but the re-

maining states of the Ruelle and Takens sequence persist until �=3:208 where a reverse
bifurcation back to periodicity occurs at �= − 0:3. The � interval over which this takes place
expands with increasing � until �	 3:29, after which only periodic behaviour is seen until the
subharmonic [5] bifurcation sequences begin in the range �∈ [3:355; 3:445], the precise value
depending on �.
There are several other features of Plates 1 and 2 that are of general interest, more from the

standpoint of dynamical systems than in the context of SGS turbulence models per se. The
most pervasive of these is a large region of periodicity beginning at �	 3:639 and extending
as far as �	 3:935 (modulo ‘holes’ and ‘islands’, to be discussed below) having bounds on �
ranging from ∼ 0:18 to ∼ 0:5, with exact values depending on �. This region, which we term
‘high-� periodic,’ is connected to the main region of periodicity by a ‘bridge of periodicity,’ as
can be seen in Plates 1(a) and 2(b). We note, however, that existence and extent of this bridge
depends on initial conditions, as can be seen from Plate 3. This �gure was prepared exactly
as was Plate 1(a), but employing slightly di�erent initial conditions: a(0) = 0:31; b(0) = 0:94,
which will be termed ‘alternative’ in the sequel. In this case the bridge does not completely
connect the two periodic regions, indicating existence of at least two solutions to the DDSs
Equations (14) in the region �∈ (3:4; 3:6). On the other hand, the large region of periodicity
at higher values of � still persists, and is probably generic for Equations (14). It should be
noted, however, that this region contains very small islands (sometimes single isolated points
to within our computational resolution) of various other behaviours that cannot be displayed at
the plotting resolution employed herein. The inset to Plate 2(b), a graphics zoom-in, provides
an example.
Another prominent feature that appears adjacent to periodic and quasiperiodic regions, but

embedded within divergent states is a series of islands (see Abraham et al. [8]) where the DDS
remains bounded even though it is divergent at most nearby (�; �) points. Often interspersed
with these are holes: regions of divergence completely surrounded by bounded behaviour.
These regions can be seen in Plates 2(a,b) for �¡0 with � in the neighbourhood of 3.3–3.6,
and for �¿0 and � near 3.9, respectively. We see from these �gures that islands occur only
for states retaining a fundamental frequency.
It is important to note other signi�cant di�erences between Plates 1(a) and 3 arising

from SIC. First, careful comparison of these two �gures shows that onset of divergence
occurs at a higher value of (positive) � in Plate 3; hence, the corresponding initial con-
ditions lead to a larger region of stable behaviour. Second, the regime boundaries in the
neighbourhood of �	 3:2; �	 − 0:3 are completely di�erent, as is the topology of the hole-
island structure near �	 3:5; �	 − 0:4 and �	 3:9; �	 0:4. It will be essential for the con-
struction of SGS models to more completely understand the e�ects of changing initial
conditions.
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In summary, the regime maps displayed in Plates 1–3 indicate existence of two main
bifurcation sequences: (i) Ruelle and Takens, and (ii) Feigenbaum. But in most cases of either
�xed � or �xed � with the opposite parameter varied, the sequence is far more complicated
(as seems to also occur in physical experiments—see, e.g. Reference [9]). Moreover, we have
found evidence of intermittency as well, to be discussed in the next subsection in the context
of time series and phase portraits where it is more easily identi�ed.

3.3. Time series

In this subsection we present time series for each of the important classes of behaviour already
discussed in terms of psds; we also provide phase portraits for particularly interesting cases.
In addition, we give a de�nition of ‘mild SIC’ alluded to earlier, and we display evidence of
intermittent behaviour for the DDS of Equations (14).
Figure 3 presents time series for each of the possible states shown in Plates 1–3 (except

steady and divergent), and whose power spectra have been provided in Figures 1 and 2.
The time scale used is arbitrary (it would be set with estimates of physical time scales in
a complete model), but the same scale is used in all time series presented herein. From the
standpoint of constructing models, it might at �rst seem dismaying that such a large number
of characteristic behaviours can occur in very close proximity in parameter space, and in some
cases seemingly inextricably entangled (recall inset to Plate 2(a)). But one should �rst raise
the question whether this actually can occur spatially and=or temporally in N–S �ows. At
present there seems to be no experimental evidence to either support or refute this behaviour,
but if it should be con�rmed, then the structure apparent in the regime maps presented here
would be an advantage for models.
There are several interesting aspects of the data displayed in Figure 3. First, it can be

seen that parts (c), (e) and (f) of the �gure show very similar features. These correspond to
subharmonic after three bifurcations (�=3:57; �= − 0:02), quasiperiodic (�=3:1; �= − 0:25)
and noisy subharmonic (�=3:6; �= − 0:1), respectively. Their corresponding power spectra
are distinctly di�erent, as can be seen from Figures 1 and 2. It might at �rst seem surprising
that noisy subharmonic behaviour would appear so similar to the two states having non-noisy
spectra. But from Figure 2(a) we see that the noise is at very low power compared with
the fundamental and subharmonic, and the overall e�ect seems similar to the ‘scrambling’
that occurs due to incommensurate frequencies in the quasiperiodic case. Furthermore, the
non-noisy subharmonic case of Figure 1(c) is only a few bifurcations away from chaos and
is beginning to show noticeable complexity.
The second observation concerns strong similarities among Figures 3(d), (g)–(i). These

correspond to phase locked, noisy phase locked, noisy quasiperiodic w=fundamental and noisy
quasiperiodic w=o fundamental; their power spectra have been presented in Figure 1(d) and
Figures 2(b)–(d), respectively. It is of interest to note that these four states appear mixed
with one another over signi�cant portions of the regime maps (e.g. again recall the inset to
Plate 2(a)), and while this fact raises serious concerns regarding the structure of models in
these regimes, the time series (the ultimate output of the model) are very similar. Indeed,
without the detailed power spectral analyses we have performed in this study one might not
recognize that distinct states exist, so this mix of regimes will likely have only minimal e�ect
on models. Finally, we note the essentially identical time series in Figures 3(b) and (k). This
is at �rst very surprising when one considers the corresponding power spectra presented in
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Figure 3. Time series for all nontrivial states: (a) periodic; (b) periodic with di�erent fundamental; (c)
subharmonic; (d) phase locked; (e) quasiperiodic; (f) noisy subharmonic; (g) noisy phase lock; (h) noisy
quasiperiodic w=fundamental; (i) noisy quasiperiodic w=o fundamental; (j) broadband w=fundamental;

(k) broadband w=di�erent fundamental; and (l) broadband w=o fundamental.

Figures 1(b) and 2(f), respectively. Figure 3(k) is a particularly interesting case that will be
treated in more detail later in this section.
We earlier alluded to a property we term ‘mild SIC’. In Figure 4(a) we display time series

from a case exhibiting this property corresponding to (�; �)= (3:7; 0:1). The two time series
{a(n)} shown in the �gure correspond to initial conditions a(0) = 0:3; b(0) = 0:95 (black) and
a(0) = 0:31; b(0) = 0:94 (grey). There are two key features to observe in these plots. First, the
amplitudes of the two time series are unequal from point to point, and they do not vary in a
synchronous way; i.e. one time series cannot be obtained from the other by a phase shift. But
despite this, we observe the second main feature: the phase di�erence between the two time
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Figure 4. Depiction of mildly SIC; black lines from standard initial conditions, grey lines from alternative
conditions: (a) time series showing mild SIC; and (b) time series showing SIC.

series remains unchanged (in phase, for this case). We use these properties to de�ne mild
sensitivity to initial conditions. It should be noted that these time series appear to be chaotic,
and their power spectra are noisy quasiperiodic. On the other hand, both the fundamental and
a subharmonic mode are of signi�cant amplitude. We have found that if the fundamental is
present, SIC will often be no more than mild; conversely, once the fundamental disappears true
SIC occurs. An example of this latter case is displayed in part (b) of Figure 4, corresponding
to (�; �)= (3:2;−0:415) to clearly indicate the di�erences. Here, we see the time series going
in and out of phase as they evolve in time. But it is not always the case that existence of the
fundamental is su�cient to guarantee mild SIC, and we have been unable to �nd a property
that provides completely certain prediction of this, other than Lyapunov exponents.
We next consider the situation concerning intermittency. It should �rst be noted that the

term intermittency has a more precise meaning in the context of dynamical systems than
is the case for physical turbulence. In particular, there are at least three identi�ed types of
intermittency (see Berg�e et al. [33]) associated with the manner in which Floquet exponents
cross the unit circle, and at least two of these have been found in physical settings. On
the other hand, physical turbulence is usually characterized by a value of the intermittency
factor, de�ned (heuristically) as the ratio of the time a �ow is turbulent to the total time of
measurement; and also related to the asymptotic behaviour of the �atness of small scales as
the high-pass �lter frequency applied to the data increases (see Frisch [7]). We observe that it
does not seem possible to detect intermittency from a power spectrum, but it is relatively easy
to identify it in a time series; and at least for type I intermittency, it is fairly easy to deduce
its onset from a phase portrait. We will employ both the time series and phase portraits in
what follows.
Figure 5(a) displays time series of both u and v components of the dynamical system in

a state corresponding to the onset of type I intermittency. (We will use this notation inter-
changeably with {a(n)} and {b(n)}.) The associated phase portrait is presented in Figure 5(b).
From the time series we see periods of low amplitude, fairly regular oscillation superimposed
on a signal of growing mean amplitude followed by a burst of high-amplitude, less regular
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Figure 12. Long time series of type III intermittency; (�=3:83; �= − 0:0678): (a) standard initial
conditions; and (b) alternative conditions.

with �=3:9; �= − 0:03, corresponding to the far lower right-hand portions of the yellow
regions in Plates 1(a) and 2(b). Type I intermittency appears to be most prevalent in part (a)
corresponding to �=2:9; �= −0:55, in the low-� chaotic region occurring prior to the reverse
bifurcations back to periodicity. But signi�cant type I intermittency also appears in the time
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Figure 13. Comparison of time series with broadband power spectra: (a) �=2:9; �= − 0:55; (b)
�=3:7; �= − 0:15; (c) �=3:9; �= − 0:03; (d) �=3:9; �=0:15; and (e) �=3:87; �=0:55.

series of part (b), computed with �=3:7; �= − 0:15. This is in the region preceding another
reverse bifurcation, but in this case one that leads to periodicity with a lower fundamental
frequency. Both parts (d) and (e) show small segments of type I intermittency, and quite
pronounced type III intermittency, especially in part (e). Both of these correspond to high �
and �¿0 :�=3:9; �=0:15, and �=3:87; �=0:55, respectively.
It is important to note that the power spectra are very similar for all of these time series—

broadband w=o fundamental, and yet details of appearance of the time series are quite di�erent.
This demonstrates that in the context of �tting experimental data, as in References [10; 11],
use of the psd is not su�cient because di�erent time series can lead to (essentially) the same
psd. Moreover, in this same vein, it is clear from these examples that the psd does not readily
quantify intermittency; it is the type and degree of intermittency that seem to distinguish these
time series.

3.4. Correlations, skewness and �atness

In this section we present some properties of the solutions to Equations (14) that are widely
used in studies of physical turbulence. Our motivation for this is to provide an initial link
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between these equations and behaviours of actual N–S �ows. In particular, these statisti-
cal quantities have been extensively studied, and much is known regarding their observed
values. In addition, we will see that in some cases one, or more, of these quantities can
aid in providing unambiguous classi�cation of behaviour in cases (noted above) for which
this was not possible with a psd alone. On the other hand, it will also be evident that in
most cases the psd, in conjunction with our classi�cation scheme, will provide a more reli-
able identi�cation of behaviour type. We will begin with discussions of autocorrelation and
cross correlation in the �rst subsection, and follow this with a subsection on skewness and
�atness.

3.4.1. Auto- and cross-correlations. Autocorrelation provides a means of determining how
long a time series ‘remembers where it has been.’ For a discrete time series as we deal
with here, say {a(n)}Nn=1, we calculate the autocorrelation as a function of the correlation time
interval m�t; m=1; 2; : : : ; mmax�N :

C(m)≡ 1=(N −m− 1)∑N−m
n=1 (a

n+m − �a)(an − �a)

1=(N − 1)∑N
n=1(an − �a)2

	 〈u′(t); u′(t +m�t)〉
‖u′2‖22

(15)

Here u′ ≡ u− �u, with overbar denoting a time average; 〈·; ·〉 is the usual inner product, and ‖·‖2
is the L2 norm with respect to time. That is, we compute autocorrelations of the �uctuating part
of {a(n)} which has been sampled with a discrete interval �t. Clearly, from Equation (15)
it can be seen that −16C(m)61. Furthermore, periodic and quasiperiodic functions have
corresponding autocorrelations.
Of more interest are the autocorrelations of the noisy states discussed above in terms of

their psds and time series, because for these the behaviour is sometimes counter intuitive.
In the following �gures we present results for autocorrelations with mmax =750. (Recall that
N =104 for calculation of statistics, and that the time series have been computed for 5× 104
steps.) This value of mmax is easily su�cient to allow one to recognize all important trends.
Figure 14 provides autocorrelations for each of the noisy cases for which we have presented
psds in Figure 2.
In discussing this �gure, we �rst note that the maximum computed correlation time was 0.24

in the same arbitrary units employed for the time series. We have displayed only the �rst 0.1
units because the trends do not change in the remaining interval, and the plots are more easily
read and interpreted over this shorter time. From part (a) of the �gure (noisy subharmonic,
corresponding to the psd of Figure 2(a)) we see that despite the broadband noise shown in
Figure 2(a), the fundamental and subharmonic frequencies dominate the behaviour. There is
no discernable decay of autocorrelation, which is consistent with our earlier observation that
the noise is at very low power compared with the harmonic peaks, and that the time series
(Figure 3(f)) shows only slight deviations from noise-free subharmonic behaviour. Part (b)
of Figure 14 presents noisy phase-locked behaviour corresponding to the psd of Figure 2(b)
and the time series in Figure 3(g). As with the previous case, there is no obvious decay of
the autocorrelation, and the reasons for this are similar to those for part (a).
The more interesting cases begin with part (c), which is noisy quasiperiodic w=fundamental.

Here we see a distinct, but very slow, decay of the correlation function, providing a signi�cant
di�erence between this and the noisy phase-locked case. A comparison of the psds for these
two cases in Figure 2 provides a hint that in some situations these two behaviours would be
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Figure 14. Autocorrelations corresponding to power spectra of Figure 2: (a) subharmonic; (b) phase
locked; (c) quasiperiodic w=fundamental; (d) quasiperiodic w=o fundamental; (e) broadband w=funda-

mental; (f) broadband w=di�erent fundamental; and (g) broadband w=o fundamental.

very di�cult to distinguish from the psd alone, and decay of the autocorrelation may yield a
means for unequivocally separating these two behaviours.
We have earlier remarked that existence of the fundamental frequency in the power spectrum

appears to be a determining factor in whether or not the autocorrelation decays rapidly. The
�nal four parts of this �gure display this. Part (d) is the noisy quasiperiodicity whose psd is
presented in Figure 2(d). There is no fundamental frequency, and we see fairly rapid decay
of the autocorrelation. But it is of interest to note that the autocorrelation function retains
a distinct regularity, even at rather low values. In contrast to this rather rapid decay is the
quite slow decay shown in Figures 14(e) and (f). These correspond to completely broadband
spectra, but with a fundamental still present. We have earlier noted that such cases would be
di�cult to distinguish from noisy periodic, and these autocorrelations substantiate this.
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The �nal case in Figure 14 corresponds to a broadband power spectrum w=o fundamental.
Here we see that the autocorrelation rapidly decays to essentially zero with the oscillations
about zero showing no regular pattern, in contrast to the noisy quasiperiodic w=o fundamental
case. Thus, again, the autocorrelation may provide a means of separating these two cases in
borderline situations where the power spectra show some remnants of quasiperiodicity but are
mainly broadband.
Cross correlations are among the more valuable statistical quantities associated with a tur-

bulent �ow �eld simply because, up to rescaling, these are the o�-diagonal terms of the
Reynolds stress tensor. In the context of RANS second-order closures, modelling the PDEs
whose solutions are these cross correlations is crucial. Moreover, less than satisfactory accu-
racy of these quantities as computed in LES is one of the main shortcomings of this form
of turbulence modelling. In the case of the discrete data considered here, we calculate the
cross-correlation as

u′v′ 	
∑N

n=1(a
(n) − �a)(b(n) − �b)

1
2

[∑N
n=1(a(n) − �a)2 + (b(n) − �b)2

] (16)

Plate 4 displays the u′v′ cross correlations obtained from Equations (14) in computer runs
described earlier; they are computed and output simultaneously with the spectral characteri-
zations already discussed. There are several important features to observe in this �gure. First,
very light green regions correspond to nearly zero correlation of either sign, and comparisons
of Plate 4 and either Plate 1(a) or 2(b) shows that these regions generally coincide with
a broadband spectrum w=o the fundamental frequency. On the other hand, it is also clear
from these �gures that the regions of broadband psds are considerably more extensive than
are those of nearly zero cross correlation. We next observe that the regions of positive u′v′
correlation are in the part of the colour table going toward red, and it can be seen that all of
the steady, and much of the periodic, regions of the regime map exhibit these colors for their
cross correlations. Furthermore, all high-�, high-� regimes show positive cross-correlation ex-
cept those in the high-� periodic regime. It is also interesting to observe that no distinction
between phase lock and quasiperiodicity can be detected in the cross correlations; but they
do correctly indicate subharmonic and periodic with a di�erent fundamental frequency, just
as does the spectral analysis.
Colours ranging from dark green through various shades of blue correspond to negative

u′v′ correlations. We �rst note that essentially all low-� behaviour beginning with the tran-
sition to periodicity in the Ruelle and Takens sequence possess this character. In addition,
as already mentioned, the high-� periodic region as well as the bridge connecting it to the
low-� regimes show negative cross correlations. It is also interesting to note from Plate 4
that both subharmonic and periodic regimes undergo two sign changes (+→ − →+) of their
correlations for � �xed and � varied over the interval in which bounded behaviours occur.
This aspect cannot be detected with the psd.
Finally, we focus on the inset to Plate 4. The main purpose of this inset is to again

emphasize the apparently fractal nature of the � − � basins of attraction for Equations (14),
and to demonstrate the richness of behaviours that can occur in very small subsets of the �−�
domain. The inset shows cross correlations in a neighbourhood of the lower left-hand corner
of the high-� region of single-frequency periodicity. On the left side of this �gure we see
highly (positively) correlated subharmonic and quasiperiodic states, as well as those associated

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:545–578



572 J. M. McDONOUGH AND M. T. HUANG

with a broadband spectrum with fundamental. As we move towards the centre of the �gure,
we see a sharp transition to negative (and still very high) correlations in, and near the bottom
of, the high-� periodic region. But below this region there is no sharp transition, and the
boundary between positive and negative correlations is probably fractal. We also see vertical
streaks of positive correlation in regions of � corresponding to the ‘windows of periodicity’
in the 1-D logistic map, as detected in the spectral analysis as well.

3.4.2. Skewness and �atness. We next consider skewness of the derivatives of Equations
(14). It is known (see, e.g. Reference [7]) that skewness of spatial derivatives in a turbu-
lent �ow are typically in the range (−0:6;−0:3) with values outside this range occasionally
observed. In the case of Equations (14) we can only obtain discrete time derivatives (which
might be transformed to spatial derivatives by invoking Taylor’s hypothesis), but it is easily
checked from Equations (5) that if ‖u‖ and ‖v‖ are O(1), then the time derivative is of the
same order of magnitude as are the spatial derivatives for large Re. Thus, for the present
purposes we de�ne a dimensionless skewness of the (discrete) time derivative as

S=
(�u=�t)3

((�u=�t)2)3=2
	 1=(N − 1)∑N

n=1(a
(n) − a(n−1))3[

1=(N − 1)∑N
n=1(a(n) − a(n−1))2

]3=2 (17)

We see from (17) that S is independent of the time scale, so our use of arbitrary time
increments will have no in�uence on the computed value of S.
In Plate 5 we display the contours of skewness as a function of � and � as we have

done with the cross-correlation. We observe that the range of computed values is generally
similar to experimental observations, although we must view this with some caution in light of
di�erences in detail between temporal and spatial derivatives. It can be seen from this �gure
that the skewness values corresponding to most of the chaotic portion of the regime maps,
Plates 1(a) and 2, are generally between −0:9 and −0:1, but with a region of signi�cant size
in the low-�, high-|�| regime where S¡− 1:0. In particular, it appears that the regions of the
regime map that one would expect to utilize most often in a turbulence model exhibit values
of skewness that are consistent, in a general sense, with experimental observations.
Contours of �atness are displayed in Plate 6. In this case we have used �atness of the u

component of velocity, computed as follows:

F ≡ u′4

(u′2)2
	 1=(N − 1)∑N

n=1(a
(n) − �a)4[

1=(N − 1)∑N
n=1(a(n) − �a)2

]2 (18)

The �gure indicates that values of �atness are generally below the value corresponding to
a Gaussian probability density, F =3. From Tennekes and Lumley [34] and Frisch [7] we
know that F¡3 corresponds to a probability density function (pdf) with smaller variance than
Gaussian, and conversely, the pdf for F¿3 will display greater than Gaussian variance. We
have also noted above that �atness can be related to the small-scale intermittency, with high
values of �atness corresponding to a highly-intermittent signal. The results displayed in Plate
6 are consistent with this in only a general way. In particular, recall that the low-�, high-|�|
with �¡0 results show very strong type I intermittency, and this region in Plate 6 indicates
values of �atness both greater than three and less than three. Furthermore, regions of type III
intermittency generally show values of �atness less than three.
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These observations seem to imply that the results from Equations (14) are not as intermittent
as is physical high-Re turbulence; the maximum value of �atness found in the calculations
was only slightly greater than �ve, whereas experimentally observed values are sometimes as
much as twice this value, and occasionally even more. Nevertheless, the general trends seem
to be correct. We noted above in Section 2 that � is directly proportional to the wavenumber
k (actually a component of the wave vector, k), and the degree of intermittency is observed
to increase on small scales, i.e. at high values of |k|. Plate 6 shows generally high values of
F at the lowest (high-amplitude, negative) values of �, which is consistent with this.
Furthermore, it is possible to increase the level of intermittency by employing linear combi-

nations of any particular DDS as described in Reference [16]. Indeed, we have found that lin-
ear combinations of the logistic map (1) are capable of �tting experimental data for backward-
facing step-like �ows (see McDonough and Yang [35] and Roclawski et al. [36]), when a
single logistic map is not capable of this. In light of the fact that, by construction, Equations
(14) model only a single wave number of the N–S equations solutions, it is reasonable to
expect that more than a single realization might be needed to completely match properties of
physical �ows.

3.5. Further discussion

In this �nal subsection we will elaborate further on some of the discussions of the �gures
begun above, and in addition provide comments on advantages and disadvantages of the
proposed modelling approach while comparing it to similar methods. We will then brie�y
indicate some details on how this information might be used in practice and, along with this,
indicate the bene�t of a close connection with laboratory experiments in attempting to explore
the potential of such models.
We begin by noting the general similarities seen in the various contour plots for power

spectral characterization, cross correlation, skewness and �atness. Each of these plots exhibits
certain speci�c features of its own, but at the same time all are rather similar, indicating
an overall consistency across the several representations as � and � are varied. Comparison
of Plates 1, 4, 5 and 6 shows that the power spectral analysis (Plate 1(a)) provides the
best overall delineation of the various regimes, which is why we have placed considerable
emphasis on this particular mode of characterization. At the same time, there are speci�c
details highlighted by the cross correlations of Plate 4 that are not available in the power
spectral analysis: namely, the manner in which sign changes occur in the �uctuating parts of
the velocity components as the bifurcation parameters are varied, and hence, the signs of the
Reynolds stresses. But neither skewness nor �atness seems capable of discriminating between
the various types of chaotic behaviours described by the power spectral analysis. In addition,
they do not even reliably distinguish the quasiperiodic and phase-locked regimes.
We next remind the reader that all of the results presented herein, with just a few already

noted exceptions (especially Plate 3), have been computed with a single set of initial con-
ditions. Obviously, there exists an uncountably in�nite set of possible combinations of a(0)

and b(0). A comparison of Plates 1(a) and 3 suggests that our standard choice has been the
slightly more conservative of the two alternatives considered in the sense that it results in
a smaller region of non-divergent combinations of � and �. But at present we do not know
whether this is the minimal region (it probably is not), and for purposes of constructing reli-
able models it will be necessary to stay well within the non-divergent region for all possible
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initial conditions. Studies by Bible and McDonough [31] have partially addressed this issue,
both for equal and nonequal �s and �s.
The assumption of equal �s and �s is itself an important area requiring further study. We

noted at the outset that the choice �1 =�2 and �1 = �2 provided a natural way to limit the extent
of these initial investigations, and at least the assumption of equal �s is not unreasonable. On
the other hand, in some (possibly most!) physical �ow situations the assumption of equal �s
is probably not realistic. In our discussions of �atness, with computed values summarized in
Plate 6, we have observed that our results are somewhat lower than those generally seen in
physical measurements. In this regard we note that with �1 = �2 it must be the case that the
�atness of u equals the �atness of v; i.e. F(u)=F(v), and there is experimental and DNS
evidence that this is not the case for small values of y+, the inner-scale distance from a solid
bounding surface. Origins of this discrepancy are discussed in detail in Xu et al. [37]. Recent
work [22] has examined the e�ects of �1 �= �2 as well as �1 �=�2, to a lesser extent. Clearly,
our interpretation of the physical connection of � with a velocity gradient suggests that in
most situations �1 �= �2 is likely, and results reported in Reference [22] re�ect this.
We mentioned in Section 2 that Equations (14) arise in a way that is at least similar to

other models exhibiting chaotic behaviour. It is worthwhile at this point, with the generic
behaviour of these equations in hand, to revisit this earlier discussion. In terms of the manner
of derivation, the best-known similar system is probably the Lorenz model [24]. Although
this is a di�erential system, after numerical discretization is applied the resulting algebraic
equations are not extremely di�erent from Equations (14). There are, however, two rather
fundamental di�erences. The �rst is that the Lorenz equations comprise an autonomous system
of three di�erential equations, the minimum needed for existence of chaotic solutions (see,
e.g. Reference [33]); so the corresponding discretization consists of three algebraic equations,
rather than the two equations of (14). Indeed, it is crucial to recognize that Equations (14)
arose from the system of only two di�erential equations (8) (which, itself is incapable of
producing chaos), and this implies that it is the transformation consisting of Equations (11,12)
that has played a fundamental role in producing the observed turbulent-like behaviours.
The second major di�erence between the derivation of the Lorenz system and what we have

done here is that in the former the Galerkin approximation was truncated after the lowest mode.
This, of course, is not reasonable in the context of a subgrid-scale turbulence model, but we
must bear in mind that SGS modelling was not the original goal in constructing the Lorenz
equations. By way of contrast, Equations (14) are derived to represent a single arbitrary mode
of a Fourier representation of a N–S equations solution, a viewpoint generally consistent with
SGS modelling if we choose that mode (or, possibly several of them) corresponding to a high
wavenumber.
It is also worth recalling that Equations (14) have some of the basic structure of the H�enon

map [23], as we have earlier observed. But here, again, there are signi�cant fundamental di�er-
ences, some of which have been noted above. It was H�enon’s intention to produce what might
be viewed as a Poincar�e map of the Lorenz equations, and as we might conclude from the
preceding discussions, Equations (14) cannot be viewed as a Poincar�e map of Equations (8).
The most important distinction between Equations (14) and other quadratic maps that have

been widely studied, including that in Reference [23], is the nature of the coupling, and the
resulting symmetry between the two equations of the system. The complete consequences
of this are yet to be fully investigated, but retaining bilinearity in the coupling terms of
both equations renders use of analytical methods of study much more di�cult. All other
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2-D quadratic systems studied in the past, of which the authors are aware, employed linear
coupling in at least one equation. Even in such cases analysis is quite di�cult unless additional
constraints are imposed (e.g. area preservation), leading Lyubich [38] to note, ‘Even for
di�eomorphisms in dimension two this looks like a project for the whole twenty-�rst century.’
At this point it is reasonable to ask, ‘Of what practical use is the ‘poor man’s N–S equa-

tion’?’ Is it nothing more than a mathematical curiosity with no actual utility, or might it be
capable of aiding prediction of �ow behaviour? We have suggested from the start that our
intention is to employ Equations (14) as part of a LES SGS modelling formalism introduced
in [15] and described in detail in References [16; 17] (also see Sagaut [39]). Here, we will
present no more than an outline of this approach since it has been thoroughly documented in
Reference [17]. On the other hand, some description is needed to provide the framework into
which results of Equations (14) would be cast.
The treatment of the numerical solution of the N–S equations given in References [15–17]

di�ers from usual LES in three key, related ways: (i) the equations of motion are not �ltered;
(ii) subgrid-scale models are constructed for primitive variable �uctuations—not for their
statistics, and (iii) SGS model results are directly added to the large-scale part of the solution.
Clearly, the �rst item enables the second which, we contend, simpli�es the SGS modelling
task, at least in the sense that it facilitates closer connection to actual �ow physics on the
sub-grid scales. At the same time deleting application of the �lter to the equations raises the
question of how to de�ne the resolved scales and, possibly even more important, how to avoid
e�ects of aliasing in an under-resolved large-scale part of the solution. These issues have been
addressed in the cited references, and in many respects are irrelevant for the present study in
any case. But the preceding discussion does provide the motivation and setting for the current
work.
The form of the SGS model proposed in the above references consists of modelling each ve-

locity component (actually, the high-wave number contribution) as a product of three factors:
(i) an amplitude factor constructed from Kolmogorov’s theories as described in Reference [7],
(ii) an anisotropy correction obtained by invoking a scale-similarity argument as is done in
constructing typical dynamic subgrid-scale models (see Meneveau and Katz [40] for a recent
review), and (iii) a discrete dynamical system to produce temporal �uctuations. It is worth
noting that, in principle, the modelling procedure described in Reference [17] could be used
to estimate SGS stresses in the context of Domaradzki’s estimation method [12; 13], and it
might also be used in place of the random number generators employed in the linear-eddy
modelling approach of Kerstein and various co-workers (see, e.g. Kerstein [41]). In all such
cases, a realistic map M would be desirable, but possibly not necessary in the linear-eddy
model case.
In References [15; 16] and later simulations, e.g., McDonough et al. [42] the same 1-D

DDS was used for each solution component, but with independent realizations of the map for
each component. Clearly, this implies that some additional correlation procedure is needed
(see References [16; 17]), but it also implies that �uctuations of all components behave in the
same way. This latter property led to inaccurate heat transfer predictions in Reference [42],
and the review by Warhaft [43] indicates that the structure of passive scalar �uctuations is
not the same as that of the �uctuating �ow �eld advecting them. This motivated the present
authors to introduce a completely coupled DDS in the context of reduced-kinetics H2–O2
combustion in Reference [44]; the current study provides a far more detailed analysis of the
�ow �eld alone.
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What is clear from discussions in References [15–17; 42] is that the bifurcation param-
eter(s) of each realization of the DDS(s) must be set locally (in space and time) based
on the resolved-scale �ow �eld and its gradients. This, itself, constitutes a mapping, say
M : (u; v;∇u;∇v)→ (�1; �2; �1; �2), and the details of this mapping are, a priori, unknown.
In the cited references we employed (a slight modi�cation of) the 1-D logistic map (1) as
our DDS, so there was only a single bifurcation parameter. In this case it was not di�cult
to construct an ad hoc mapping, but it is not clear that it always accomplished what was
intended. The present situation is for more complex, necessitating the detailed study of the
DDS structure we have presented herein, and relating this to physically-measurable quantities
such as u′v′, S(du=dt) and F(u′). It should also be noted, in addition, that it has recently
been demonstrated (McDonough [45] and McDonough and Holloway [46]) that a two-factor
model of the type alluded to above containing three factors provides a simpler approach, and
that the amplitude of such a formalism can be constructed from high-pass �ltered resolved-
scale LES results using local (in space) power-law scalings related-to second-order structure
functions, a la the Kolmogorov (K62) theory as described in Reference [7]. The poor man’s
Navier–Stokes equations we have analysed herein provide a natural �uctuating component for
this form of model.
We also point out that Equations (14) have another potential application, namely, real-time

control. It has been shown in Reference [47] that DDSs can successfully model the complete
velocity behaviour as well as the high-pass �ltered part. In fact, it was only the former that
was originally treated in References [10; 11]. This implies that if it is known, a priori, what
range of �ow behaviours a controller must respond to (and this is usually the case), then the
poor man’s N–S equations, with the help of experimental data, can be used to design and
implement controllers for �uid �ows.

4. SUMMARY AND CONCLUSIONS

In this paper we have derived a new discrete dynamical system directly from the 2-D N–S
equations, and we have provided detailed numerical characterization of the possible behaviours
for the restricted case corresponding to setting the four bifurcation parameters equal in pairs.
We have reported results summarized in the form of regime maps for over 107 individual
cases and have shown that although the DDS is extremely simple (and consequently very
inexpensive to compute), it is capable of reproducing essentially all of the known behaviours
of the N–S equations.
We conclude from these analyses, especially the realistic behaviours embodied in cross

correlations, skewness and �atness, that the poor man’s N–S equation has signi�cant potential
for building subgrid-scale models in the context of synthetic velocity forms of LES, but that
this may require considerable e�ort to construct the necessary mappings from physical exper-
imental data. Finally, we propose that such DDSs may prove valuable as real-time controllers
of �uid �ow phenomena because they appear to preserve the qualitative features of N–S �ows
and at the same time are very inexpensive to compute.
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 Regime Map

  Color Table

13   Divergent
12   Broadband w/o fundamental
11   Broadband w/ different fundamental
10   Broadband w/ fundamental
  9   Noisy quasiperiodic w/o fundamental
  8   Noisy quasiperiodic w/ fundamental
  7   Noisy phase lock
  6   Noisy subharmonic
  5   Quasiperiodic
  4   Phase lock
  3   Subharmonic
  2   Periodic w/ different fundamental
  1   Periodic
  0   Steady
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Plate 1. Regime Map: (a) regime map for entire domain of interest; and (b) colour table.
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Plate 2. Regime map zoom-ins: (a) (�; �)∈ [2:5; 3:5]× [−0:8; 0:0]; and (b) (�; �)∈ [2:5; 3:5]× [−0:8; 0:0].
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Plate 3. Regime map for di�erent initial conditions.
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Plate 4. Cross correlation u′v′ as function of � and �.
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Plate 5. Skewness of du=dt as function of � and �.
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Plate 6. Flatness of u as function of � and �.
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